mirror of
https://github.com/Didnelpsun/Math.git
synced 2026-02-07 04:23:42 +08:00
更新第二三章习题部分
This commit is contained in:
Binary file not shown.
@@ -84,19 +84,13 @@ $\therefore \lim u^v=e^{\lim v\cdot\ln u}=e^{\lim v(u-1)}$
|
||||
|
||||
\subsection{指数法则}
|
||||
|
||||
一般需要与洛必达法则配合使用。
|
||||
一般需要与洛必达法则配合使用。\medskip
|
||||
|
||||
\textbf{例题:}求$\lim\limits_{x\to 0}\left(\dfrac{a^x+b^x+c^x}{3}\right)^{\frac{1}{x}}(a>0,b>0,c>0)$。\medskip
|
||||
|
||||
$=e^{\lim\limits_{x\to 0}\frac{\ln\left(\frac{a^x+b^x+c^x}{3}\right)}{x}}$
|
||||
$=e^{\lim\limits_{x\to 0}\frac{\ln\left(\frac{a^x+b^x+c^x}{3}\right)}{x}}=e^{\lim\limits_{x\to 0}\frac{\ln(a^x+b^x+c^x)-\ln 3}{x}}=e^{\lim\limits_{x\to 0}\frac{a^x\ln a+b^x\ln b+c^x\ln c}{a^x+b^x+c^x}}$(洛必达法则)
|
||||
|
||||
$=e^{\lim\limits_{x\to 0}\frac{\ln(a^x+b^x+c^x)-\ln 3}{x}}$
|
||||
|
||||
$=e^{\lim\limits_{x\to 0}\frac{a^x\ln a+b^x\ln b+c^x\ln c}{a^x+b^x+c^x}}$(洛必达法则)
|
||||
|
||||
$=e^{\lim\limits_{x\to 0}\frac{\ln a+\ln b+\ln c}{1+1+1}}$
|
||||
|
||||
$=e^{\lim\limits_{x\to 0}\frac{\ln(abc)}{3}}=\sqrt[3]{abc}$。
|
||||
$=e^{\lim\limits_{x\to 0}\frac{\ln a+\ln b+\ln c}{1+1+1}}=e^{\lim\limits_{x\to 0}\frac{\ln(abc)}{3}}=\sqrt[3]{abc}$。
|
||||
|
||||
\textbf{例题:}求$\lim\limits_{n\to\infty}n\left[\left(1+\dfrac{1}{n}\right)^{\frac{n}{2}}-\sqrt{e}\right]$。
|
||||
|
||||
@@ -108,41 +102,23 @@ $=e^{\lim\limits_{x\to 0}\frac{\ln(abc)}{3}}=\sqrt[3]{abc}$。
|
||||
|
||||
综上:
|
||||
|
||||
$\lim\limits_{n\to\infty}n\left[\left(1+\dfrac{1}{n}\right)^{\frac{n}{2}}-\sqrt{e}\right]$ \medskip
|
||||
$\lim\limits_{n\to\infty}n\left[\left(1+\dfrac{1}{n}\right)^{\frac{n}{2}}-\sqrt{e}\right]=\lim\limits_{n\to\infty}n\left(e^{\frac{n}{2}\ln(1+\frac{1}{n})}-\sqrt{e}\right)$ \medskip
|
||||
|
||||
$=\lim\limits_{n\to\infty}n\left(e^{\frac{n}{2}\ln(1+\frac{1}{n})}-\sqrt{e}\right)$ \medskip
|
||||
$=\lim\limits_{n\to\infty}n\left[e^{\frac{1}{2}}\cdot\left(e^{\frac{n}{2}\ln(1+\frac{1}{n})-\frac{1}{2}}-1\right)\right]=\dfrac{e^{\frac{1}{2}}}{2}\lim\limits_{n\to\infty}n^2\left[\ln\left(1+\frac{1}{n}\right)-\dfrac{1}{n}\right]$
|
||||
|
||||
$=\lim\limits_{n\to\infty}n\left[e^{\frac{1}{2}}\cdot\left(e^{\frac{n}{2}\ln(1+\frac{1}{n})-\frac{1}{2}}-1\right)\right]$ \medskip
|
||||
|
||||
$=\dfrac{e^{\frac{1}{2}}}{2}\lim\limits_{n\to\infty}n^2\left[\ln\left(1+\frac{1}{n}\right)-\dfrac{1}{n}\right]$
|
||||
|
||||
$=\dfrac{e^{\frac{1}{2}}}{2}\lim\limits_{n\to\infty}\dfrac{\dfrac{1}{n}-\dfrac{1}{2n^2}-\dfrac{1}{n}}{\dfrac{1}{n^2}}$
|
||||
|
||||
$=\dfrac{e^{\frac{1}{2}}}{2}\cdot\left(-\dfrac{1}{2}\right)$
|
||||
|
||||
$=-\dfrac{\sqrt{e}}{4}$
|
||||
$=\dfrac{e^{\frac{1}{2}}}{2}\lim\limits_{n\to\infty}\dfrac{\dfrac{1}{n}-\dfrac{1}{2n^2}-\dfrac{1}{n}}{\dfrac{1}{n^2}}=\dfrac{e^{\frac{1}{2}}}{2}\cdot\left(-\dfrac{1}{2}\right)=-\dfrac{\sqrt{e}}{4}$
|
||||
|
||||
\subsection{三角函数关系式}
|
||||
|
||||
\textbf{例题:}求极限$\lim\limits_{x\to 0}\left(\dfrac{1}{\sin^2x}-\dfrac{\cos^2x}{x^2}\right)$。\medskip
|
||||
|
||||
$\lim\limits_{x\to 0}\left(\dfrac{1}{\sin^2x}-\dfrac{\cos^2x}{x^2}\right)$ \medskip
|
||||
$\lim\limits_{x\to 0}\left(\dfrac{1}{\sin^2x}-\dfrac{\cos^2x}{x^2}\right)=\lim\limits_{x\to 0}\dfrac{x^2-\sin^2x\cos^2x}{\sin^2x\cdot x^2} (\sin x\sim x)$ \medskip
|
||||
|
||||
$= \lim\limits_{x\to 0}\dfrac{x^2-\sin^2x\cos^2x}{\sin^2x\cdot x^2} (\sin x\sim x)$ \medskip
|
||||
$=\lim\limits_{x\to 0}\dfrac{x^2-\sin^2x\cos^2x}{x^4} (\sin x\cos x\sim\dfrac{1}{2}\sin 2x)=\lim\limits_{x\to 0}\dfrac{x^2-\dfrac{1}{4}\sin^22x}{x^4}$ \medskip
|
||||
|
||||
$= \lim\limits_{x\to 0}\dfrac{x^2-\sin^2x\cos^2x}{x^4} (\sin x\cos x\sim\dfrac{1}{2}\sin 2x)$ \medskip
|
||||
$=\lim\limits_{x\to 0}\dfrac{2x-\dfrac{1}{4}\cdot 2\sin 2x\cdot\cos 2x\cdot 2}{4x^3} (\sin x\cos x\sim\dfrac{1}{2}\sin 2x)=\lim\limits_{x\to 0}\dfrac{2x-\dfrac{1}{2}\sin 4x}{4x^3}$ \medskip
|
||||
|
||||
$= \lim\limits_{x\to 0}\dfrac{x^2-\dfrac{1}{4}\sin^22x}{x^4}$ \medskip
|
||||
|
||||
$= \lim\limits_{x\to 0}\dfrac{2x-\dfrac{1}{4}\cdot 2\sin 2x\cdot\cos 2x\cdot 2}{4x^3} (\sin x\cos x\sim\dfrac{1}{2}\sin 2x)$ \medskip
|
||||
|
||||
$= \lim\limits_{x\to 0}\dfrac{2x-\dfrac{1}{2}\sin 4x}{4x^3}$ \medskip
|
||||
|
||||
$= \lim\limits_{x\to 0}\dfrac{2-\dfrac{1}{2}\cos 4x\cdot 4}{12x^2}$ \medskip
|
||||
|
||||
$= \dfrac{1}{6}\lim\limits_{x\to 0}\dfrac{1-\cos 4x}{x^2} (1-\cos x\sim \dfrac{1}{2}x^2)$ \medskip
|
||||
|
||||
$= \dfrac{4}{3}$
|
||||
$=\lim\limits_{x\to 0}\dfrac{2-\dfrac{1}{2}\cos 4x\cdot 4}{12x^2}=\dfrac{1}{6}\lim\limits_{x\to 0}\dfrac{1-\cos 4x}{x^2} (1-\cos x\sim \dfrac{1}{2}x^2)=\dfrac{4}{3}$
|
||||
|
||||
\subsection{提取常数因子}
|
||||
|
||||
@@ -178,25 +154,17 @@ $=\lim\limits_{t\to 0^-}\dfrac{\sqrt{t+4}\ln\left(2+\dfrac{1}{x}\right)-2\ln 2}{
|
||||
|
||||
幂次不高可以尝试洛必达:\medskip
|
||||
|
||||
$=\lim\limits_{t\to 0^-}\left(\dfrac{1}{2}\cdot\dfrac{\ln(2+t)}{\sqrt{t+4}}+\dfrac{\sqrt{t+4}}{2+t}\right)$\medskip
|
||||
|
||||
$=-\left(\dfrac{1}{2}\cdot\dfrac{\ln 2}{2}+\dfrac{2}{2}\right)=-\dfrac{\ln 2}{4}-1$。
|
||||
$=\lim\limits_{t\to 0^-}\left(\dfrac{1}{2}\cdot\dfrac{\ln(2+t)}{\sqrt{t+4}}+\dfrac{\sqrt{t+4}}{2+t}\right)=-\left(\dfrac{1}{2}\cdot\dfrac{\ln 2}{2}+\dfrac{2}{2}\right)=-\dfrac{\ln 2}{4}-1$。
|
||||
|
||||
\subsection{幂指函数}
|
||||
|
||||
当出现$f(x)^{g(x)}$的类似幂函数与指数函数类型的式子,需要使用$u^v=e^{v\ln u}$。
|
||||
|
||||
\textbf{例题:}求极限$\lim\limits_{x\to+\infty}(x+\sqrt{1+x^2})^{\frac{1}{x}}$。\medskip
|
||||
\textbf{例题:}求极限$\lim\limits_{x\to+\infty}(x+\sqrt{1+x^2})^{\frac{1}{x}}$。
|
||||
|
||||
$\lim\limits_{x\to+\infty}(x+\sqrt{1+x^2})^{\frac{1}{x}}$ \medskip
|
||||
$\lim\limits_{x\to+\infty}(x+\sqrt{1+x^2})^{\frac{1}{x}}=e^{\lim\limits_{x\to+\infty}\frac{\ln(x+\sqrt{1+x^2})}{x}} \left(\ln(x+\sqrt{1+x^2})'=\dfrac{1}{\sqrt{1+x^2}}\right)$\medskip
|
||||
|
||||
$=e^{\lim\limits_{x\to+\infty}\frac{\ln(x+\sqrt{1+x^2})}{x}} \left(\ln(x+\sqrt{1+x^2})'=\dfrac{1}{\sqrt{1+x^2}}\right)$\medskip
|
||||
|
||||
$=e^{\lim\limits_{x\to+\infty}\frac{1}{\sqrt{1+x^2}}}$
|
||||
|
||||
$=e^0$
|
||||
|
||||
$=1$
|
||||
$=e^{\lim\limits_{x\to+\infty}\frac{1}{\sqrt{1+x^2}}}=e^0=1$
|
||||
|
||||
\subsection{有理化}
|
||||
|
||||
@@ -214,17 +182,9 @@ $=1$
|
||||
|
||||
又$\sqrt{x^2+100}$在$x\to-\infty$时本质为根号差,所以有理化:
|
||||
|
||||
$\lim\limits_{x\to-\infty}x(\sqrt{x^2+100}+x)$
|
||||
$\lim\limits_{x\to-\infty}x(\sqrt{x^2+100}+x)=\lim\limits_{x\to-\infty}x\dfrac{x^2+100-x^2}{\sqrt{x^2+100}-x}=\lim\limits_{x\to-\infty}\dfrac{100x}{\sqrt{x^2+100}-x}$\medskip
|
||||
|
||||
$=\lim\limits_{x\to-\infty}x\dfrac{x^2+100-x^2}{\sqrt{x^2+100}-x}$\medskip
|
||||
|
||||
$=\lim\limits_{x\to-\infty}\dfrac{100x}{\sqrt{x^2+100}-x}$\medskip
|
||||
|
||||
$\xRightarrow{\text{令}x=-t}\lim\limits_{t\to+\infty}\dfrac{-100t}{\sqrt{t^2+100}+t}$\medskip
|
||||
|
||||
$=\lim\limits_{t\to+\infty}\dfrac{-100}{\sqrt{1+\dfrac{100}{t^2}}+1}$
|
||||
|
||||
$=-50$
|
||||
$\xRightarrow{\text{令}x=-t}\lim\limits_{t\to+\infty}\dfrac{-100t}{\sqrt{t^2+100}+t}=\lim\limits_{t\to+\infty}\dfrac{-100}{\sqrt{1+\dfrac{100}{t^2}}+1}=-50$\medskip
|
||||
|
||||
\textbf{例题:}求$\lim\limits_{x\to 0}\dfrac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x\sqrt{1+\sin^2x}-x}$。
|
||||
|
||||
@@ -248,19 +208,9 @@ $=\lim\limits_{x\to 0}\dfrac{\tan x-\sin x}{x\sin^2x}=\lim\limits_{x\to 0}\dfrac
|
||||
|
||||
又$x\to 0$,$\ln(1+x)\sim x$,所以$x\to 1$,$\ln x\sim x-1$:
|
||||
|
||||
$\lim\limits_{x\to 1^-}\ln x\ln(1-x)$
|
||||
$\lim\limits_{x\to 1^-}\ln x\ln(1-x)=\lim\limits_{x\to 1^-}(x-1)\ln(1-x)\xRightarrow{令t=1-x} =-\lim\limits_{t\to 0^+}t\ln t$
|
||||
|
||||
$= \lim\limits_{x\to 1^-}(x-1)\ln(1-x)$
|
||||
|
||||
$\xRightarrow{令t=1-x} =-\lim\limits_{t\to 0^+}t\ln t$
|
||||
|
||||
$= -\lim\limits_{t\to 0^+}\dfrac{\ln t}{\dfrac{1}{t}}$
|
||||
|
||||
$= -\lim\limits_{t\to 0^+}\dfrac{\dfrac{1}{t}}{-\dfrac{1}{t^2}}$
|
||||
|
||||
$= \lim\limits_{t\to 0^+}t$
|
||||
|
||||
$= 0$
|
||||
$=-\lim\limits_{t\to 0^+}\dfrac{\ln t}{\dfrac{1}{t}}=-\lim\limits_{t\to 0^+}\dfrac{\dfrac{1}{t}}{-\dfrac{1}{t^2}}=\lim\limits_{t\to 0^+}t=0$
|
||||
|
||||
\subsection{倒代换}
|
||||
|
||||
@@ -268,13 +218,9 @@ $= 0$
|
||||
|
||||
当极限式子中含有分式中一般都需要用其倒数,把分式换成整式方便计算。
|
||||
|
||||
\textbf{例题:}求极限$\lim\limits_{x\to 0}\dfrac{e^{-\frac{1}{x^2}}}{x^{100}}$
|
||||
\textbf{例题:}求极限$\lim\limits_{x\to 0}\dfrac{e^{-\frac{1}{x^2}}}{x^{100}}$ \medskip
|
||||
|
||||
$\lim\limits_{x\to 0}\dfrac{e^{-\frac{1}{x^2}}}{x^{100}}$\medskip
|
||||
|
||||
$= \lim\limits_{x\to 0}\dfrac{e^{-\frac{1}{x^2}}\cdot 2x^{-3}}{100x^{99}}$\medskip
|
||||
|
||||
$= \lim\limits_{x\to 0}\dfrac{1}{50}\lim\limits_{x\to 0}\dfrac{e^{-\frac{1}{x^2}}}{x^{102}}$
|
||||
$\lim\limits_{x\to 0}\dfrac{e^{-\frac{1}{x^2}}}{x^{100}}=\lim\limits_{x\to 0}\dfrac{e^{-\frac{1}{x^2}}\cdot 2x^{-3}}{100x^{99}}=\lim\limits_{x\to 0}\dfrac{1}{50}\lim\limits_{x\to 0}\dfrac{e^{-\frac{1}{x^2}}}{x^{102}}$
|
||||
|
||||
\medskip
|
||||
|
||||
@@ -282,33 +228,19 @@ $= \lim\limits_{x\to 0}\dfrac{1}{50}\lim\limits_{x\to 0}\dfrac{e^{-\frac{1}{x^2}
|
||||
|
||||
使用倒代换再洛必达降低幂次,令$t=\dfrac{1}{x^2}$
|
||||
|
||||
$\lim\limits_{x\to 0}\dfrac{e^{-\frac{1}{x^2}}}{x^{100}}$\medskip
|
||||
$\lim\limits_{x\to 0}\dfrac{e^{-\frac{1}{x^2}}}{x^{100}}=\lim\limits_{t\to+\infty}\dfrac{e^{-t}}{t^{-50}}=\lim\limits_{t\to+\infty}\dfrac{t^{50}}{e^t}=\lim\limits_{t\to+\infty}\dfrac{50t^{49}}{e^t}$
|
||||
|
||||
$= \lim\limits_{t\to+\infty}\dfrac{e^{-t}}{t^{-50}}$\medskip
|
||||
$=\cdots$
|
||||
|
||||
$= \lim\limits_{t\to+\infty}\dfrac{t^{50}}{e^t}$\medskip
|
||||
|
||||
$= \lim\limits_{t\to+\infty}\dfrac{50t^{49}}{e^t}$
|
||||
|
||||
$= \cdots$
|
||||
|
||||
$= \lim\limits_{t\to+\infty}\dfrac{50!}{e^t}$
|
||||
|
||||
$= 0$
|
||||
$=\lim\limits_{t\to+\infty}\dfrac{50!}{e^t}=0$
|
||||
|
||||
\textbf{例题:}求极限$\lim\limits_{x\to+\infty}[x^2(e^{\frac{1}{x}}-1)-x]$。
|
||||
|
||||
该式子含有分数,所以尝试使用倒数代换:\medskip
|
||||
|
||||
$\lim\limits_{x\to+\infty}[x^2(e^{\frac{1}{x}}-1)-x]$ \medskip
|
||||
$\lim\limits_{x\to+\infty}[x^2(e^{\frac{1}{x}}-1)-x]\xRightarrow{\text{令}x=\frac{1}{t}}\lim\limits_{t\to 0^+}\left(\dfrac{e^t-1}{t^2}-\dfrac{1}{t}\right)=\lim\limits_{t\to 0^+}\dfrac{e^t-1-t}{t^2}$
|
||||
|
||||
$\xRightarrow{\text{令}x=\frac{1}{t}}\lim\limits_{t\to 0^+}\left(\dfrac{e^t-1}{t^2}-\dfrac{1}{t}\right)$\medskip
|
||||
|
||||
$\lim\limits_{t\to 0^+}\dfrac{e^t-1-t}{t^2}$
|
||||
|
||||
$\xRightarrow{\text{泰勒展开}e^t}\lim\limits_{t\to 0^+}\dfrac{\dfrac{1}{2}t^2}{t^2}$
|
||||
|
||||
$=\dfrac{1}{2}$
|
||||
$\xRightarrow{\text{泰勒展开}e^t}\lim\limits_{t\to 0^+}\dfrac{\dfrac{1}{2}t^2}{t^2}=\dfrac{1}{2}$
|
||||
|
||||
\subsubsection{\texorpdfstring{$\infty-\infty$}\ 型}
|
||||
|
||||
@@ -330,21 +262,11 @@ $=\dfrac{1}{6}\lim\limits_{n\to\infty}\dfrac{n+1}{n}\times\dfrac{n+2}{n}\times\c
|
||||
|
||||
这里可以使用等价无穷小$e^x-1\sim x$。
|
||||
|
||||
$\lim\limits_{x\to 0}\left(\dfrac{e^x+e^{2x}+\cdots+e^{nx}}{n}\right)^{\frac{e}{x}}$
|
||||
$\lim\limits_{x\to 0}\left(\dfrac{e^x+e^{2x}+\cdots+e^{nx}}{n}\right)^{\frac{e}{x}}=e^{\lim\limits_{x\to 0}\frac{e}{x}\ln\left(\frac{e^x+e^{2x}+\cdots+e^{nx}}{n}\right)}$
|
||||
|
||||
$=e^{\lim\limits_{x\to 0}\frac{e}{x}\ln\left(\frac{e^x+e^{2x}+\cdots+e^{nx}}{n}\right)}$
|
||||
$=e^{\lim\limits_{x\to 0}\frac{e}{x}\left(\frac{e^x+e^{2x}+\cdots+e^{nx}}{n}-1\right)}=e^{\lim\limits_{x\to 0}\frac{e}{x}\left(\frac{e^x+e^{2x}+\cdots+e^{nx}-n}{n}\right)}$
|
||||
|
||||
$=e^{\lim\limits_{x\to 0}\frac{e}{x}\left(\frac{e^x+e^{2x}+\cdots+e^{nx}}{n}-1\right)}$
|
||||
|
||||
$=e^{\lim\limits_{x\to 0}\frac{e}{x}\left(\frac{e^x+e^{2x}+\cdots+e^{nx}-n}{n}\right)}$
|
||||
|
||||
$=e^{\frac{e}{n}\lim\limits_{x\to 0}\left(\frac{e^x-1}{x}+\frac{e^{2x}-1}{x}+\cdots+\frac{e^{nx}-1}{x}\right)}$
|
||||
|
||||
$=e^{\frac{e}{n}[1+2+\cdots+n]}$
|
||||
|
||||
$=e^{\frac{e}{n}\cdot\frac{n(1+n)}{2}}$
|
||||
|
||||
$=e^{\frac{e(1+n)}{2}}$
|
||||
$=e^{\frac{e}{n}\lim\limits_{x\to 0}\left(\frac{e^x-1}{x}+\frac{e^{2x}-1}{x}+\cdots+\frac{e^{nx}-1}{x}\right)}=e^{\frac{e}{n}[1+2+\cdots+n]}=e^{\frac{e}{n}\cdot\frac{n(1+n)}{2}}=e^{\frac{e(1+n)}{2}}$
|
||||
|
||||
\textbf{例题:}求$\lim\limits_{x\to 0}\dfrac{1-\cos x\sqrt{\cos 2x}\sqrt[3]{\cos 3x}}{\ln\cos x}$\medskip
|
||||
|
||||
@@ -360,9 +282,7 @@ $=-1+\lim\limits_{x\to 0}\dfrac{(1-\sqrt{\cos 2x})+\sqrt{\cos 2x}-\sqrt{\cos 2x}
|
||||
|
||||
$=-1+\lim\limits_{x\to 0}\dfrac{-\dfrac{1}{2}(\cos 2x-1)+\sqrt{\cos 2x}(1-\sqrt[3]{\cos 3x})}{-\dfrac{x^2}{2}}$
|
||||
|
||||
$=-1+\lim\limits_{x\to 0}\dfrac{-\dfrac{1}{2}(-\dfrac{4x^2}{2})+\left(-\dfrac{1}{3}\right)\left(-\dfrac{9x^2}{2}\right)}{-\dfrac{x^2}{2}}$
|
||||
|
||||
$=-6$
|
||||
$=-1+\lim\limits_{x\to 0}\dfrac{-\dfrac{1}{2}(-\dfrac{4x^2}{2})+\left(-\dfrac{1}{3}\right)\left(-\dfrac{9x^2}{2}\right)}{-\dfrac{x^2}{2}}=-6$
|
||||
|
||||
\section{基本计算方式}
|
||||
|
||||
@@ -376,15 +296,9 @@ $=-6$
|
||||
|
||||
重要极限有两个,但是$\lim\limits_{x\to 0}\dfrac{\sin x}{x}=1$这个很少用,因为往往用等价无穷小替代了,而$\lim\limits_{x\to\infty}\left(1+\dfrac{1}{x}\right)^x=e$则用的较多,当出现分数幂的幂指函数时,不要先去取对数,而是使用重要极限看看能不能转换。\medskip
|
||||
|
||||
\textbf{例题:}求$\lim\limits_{x\to\infty}\left(\dfrac{3+x}{6+x}\right)^{\frac{x-1}{2}}$。
|
||||
\textbf{例题:}求$\lim\limits_{x\to\infty}\left(\dfrac{3+x}{6+x}\right)^{\frac{x-1}{2}}$。\medskip
|
||||
|
||||
$=\lim\limits_{x\to\infty}\left(1-\dfrac{3}{6+3}\right)^{\frac{6+x}{-3}\cdot\frac{-3}{6+x}\cdot\frac{x-1}{2}}$
|
||||
|
||||
$=\lim\limits_{x\to\infty}e^{\frac{-3}{6+x}\cdot\frac{x-1}{2}}$
|
||||
|
||||
$=\lim\limits_{x\to\infty}e^{-\frac{3}{2}\cdot\frac{x-1}{x+6}}$
|
||||
|
||||
$=e^{-\frac{3}{2}}$。
|
||||
$=\lim\limits_{x\to\infty}\left(1-\dfrac{3}{6+3}\right)^{\frac{6+x}{-3}\cdot\frac{-3}{6+x}\cdot\frac{x-1}{2}}=\lim\limits_{x\to\infty}e^{\frac{-3}{6+x}\cdot\frac{x-1}{2}}=\lim\limits_{x\to\infty}e^{-\frac{3}{2}\cdot\frac{x-1}{x+6}}=e^{-\frac{3}{2}}$。\medskip
|
||||
|
||||
\textbf{例题:}求$\lim\limits_{x\to\infty}\left(\dfrac{2x+3}{2x+1}\right)^{x+1}$。\medskip
|
||||
|
||||
@@ -422,7 +336,45 @@ $\therefore \lim\limits_{x\to 0}x\left[\dfrac{10}{x}\right]=10$。
|
||||
|
||||
\subsection{拉格朗日中值定理}
|
||||
|
||||
对于形如$f(a)-f(b)$的极限式子就可以使用拉格朗日中值定理,这个$f(x)$为任意的函数。
|
||||
对于形如$f(a)-f(b)$的极限式子就可以使用拉格朗日中值定理,这个$f(x)$为任意的函数。使用拉格朗日中值定理最重要的还是找到这个$f(x)$。
|
||||
|
||||
\subsubsection{证明不等式}
|
||||
|
||||
证明不等式最重要的还是找到$f(x)$,有时候不等式不存在$f(a)-f(b)$这种式子,就需要我们转换。
|
||||
|
||||
\paragraph{对数函数特性} \leavevmode \medskip
|
||||
|
||||
对于对数函数,要记住其特定的性质:$\log_n(\dfrac{a}{b})=\log_na-\log_nb$。
|
||||
|
||||
\textbf{例题:}设$a>b>0$,证明:$\dfrac{a-b}{a}<\ln\dfrac{a}{b}<\dfrac{a-b}{b}$。
|
||||
|
||||
因为$\ln\dfrac{a}{b}=\ln a-\ln b$,所以令$f(x)=\ln x$。
|
||||
|
||||
所以根据拉格朗日中值定理:$\ln a-\ln b=f'(\xi)(a-b)$($\xi\in(b,a)$)。
|
||||
|
||||
又$f'(\xi)=\dfrac{1}{\xi}$,所以$\ln a-\ln b=\dfrac{a-b}{\xi}$。
|
||||
|
||||
又$\xi\in(b,a)$,所以$\dfrac{1}{\xi}\in(\dfrac{1}{a},\dfrac{1}{b})$。
|
||||
|
||||
所以$\dfrac{a-b}{a}<\dfrac{a-b}{\xi}<\dfrac{a-b}{b}$,从而$\dfrac{a-b}{a}<\ln\dfrac{a}{b}<\dfrac{a-b}{b}$,得证。
|
||||
|
||||
\paragraph{查找特定值} \leavevmode \medskip
|
||||
|
||||
对于证明一种不等式,如果里面没有差式,也无法转换为差式,那么就可以考虑制造差式,对于$f(x)$一般选择更高阶的,$a$选择$x$,$b$要根据题目和不等式设置一个常数。
|
||||
|
||||
一般是0或1。可以先尝试1。
|
||||
|
||||
\textbf{例题:}当$x>1$时,证明$e^x>ex$。
|
||||
|
||||
题目中没有差式,所以需要选择一个函数作为基准函数,里面有一个指数函数和一个幂函数,所以选择$e^x$作为基准函数。
|
||||
|
||||
然后选择一个常数作为$b$值,可以先选一个1作为$b$值:$f(x)-f(1)=f'(\xi)(x-1)$。
|
||||
|
||||
从而$e^x-e=e^\xi(x-1)$,$\xi\in(1,x)$,所以$e^x-e>e(x-1)$,即$e^x>ex$,得证。
|
||||
|
||||
\subsubsection{极限计算}
|
||||
|
||||
可以将极限式子中形如$f(a)-f(b)$的极限部分使用拉格朗日中值定理进行替换。
|
||||
|
||||
\textbf{例题:}求极限$\lim\limits_{n\to\infty}n^2\left(\arctan\dfrac{2}{n}-\arctan\dfrac{2}{n+1}\right)$。\medskip
|
||||
|
||||
@@ -493,17 +445,9 @@ $\therefore \text{原式}=\dfrac{\dfrac{1}{x}x^3+o(x^3)}{-\dfrac{1}{2}x^3+o(x^3)
|
||||
|
||||
令目标$\dfrac{f(x)-1}{x}=t$,$\therefore f(x)=tx+1$。\medskip
|
||||
|
||||
$\lim\limits_{x\to 0}\dfrac{\ln(1-x)+xf(x)}{x^2}$\medskip
|
||||
$\lim\limits_{x\to 0}\dfrac{\ln(1-x)+xf(x)}{x^2}=\lim\limits_{x\to 0}\dfrac{\ln(1-x)+tx^2+x}{x^2} (\text{泰勒展开})$\medskip
|
||||
|
||||
$=\lim\limits_{x\to 0}\dfrac{\ln(1-x)+tx^2+x}{x^2} (\text{泰勒展开})$\medskip
|
||||
|
||||
$=\lim\limits_{x\to 0}\dfrac{-x-\dfrac{x^2}{2}+tx^2+x}{x^2}$\medskip
|
||||
|
||||
$=\lim\limits_{x\to 0}\dfrac{\left(t-\dfrac{1}{2}\right)x^2}{x^2}$\medskip
|
||||
|
||||
$=\lim\limits_{x\to 0}\left(t-\dfrac{1}{2}\right)$
|
||||
|
||||
$=0$
|
||||
$=\lim\limits_{x\to 0}\dfrac{-x-\dfrac{x^2}{2}+tx^2+x}{x^2}=\lim\limits_{x\to 0}\dfrac{\left(t-\dfrac{1}{2}\right)x^2}{x^2}=\lim\limits_{x\to 0}\left(t-\dfrac{1}{2}\right)=0$
|
||||
|
||||
$\therefore\lim\limits_{x\to 0}t=\lim\limits_{x\to 0}\dfrac{f(x)-1}{x}=\dfrac{1}{2}$。
|
||||
|
||||
@@ -583,15 +527,9 @@ $\because\lim\limits_{x\to 0^-}\dfrac{\sin x}{\ln(1+3x)}=\lim\limits_{x\to 0^-}\
|
||||
|
||||
$\therefore a=-1$,从而让极限式子变为一个商的形式:\medskip
|
||||
|
||||
$\lim\limits_{x\to 0^+}\dfrac{\sin x(b\cos x-1)}{e^x+a}$\medskip
|
||||
$\lim\limits_{x\to 0^+}\dfrac{\sin x(b\cos x-1)}{e^x+a}=\lim\limits_{x\to 0^+}\dfrac{\sin x(b\cos x-1)}{e^x-1}=\lim\limits_{x\to 0^+}\dfrac{\sin x(b\cos x-1)}{x}$\medskip
|
||||
|
||||
$=\lim\limits_{x\to 0^+}\dfrac{\sin x(b\cos x-1)}{e^x-1}$\medskip
|
||||
|
||||
$=\lim\limits_{x\to 0^+}\dfrac{\sin x(b\cos x-1)}{x}$\medskip
|
||||
|
||||
$=\lim\limits_{x\to 0^+}b\cos x-1$\medskip
|
||||
|
||||
$=b-1=\dfrac{1}{3}$\medskip
|
||||
$=\lim\limits_{x\to 0^+}b\cos x-1=b-1=\dfrac{1}{3}$\medskip
|
||||
|
||||
$\therefore a=-1,b=\dfrac{4}{3}$。
|
||||
|
||||
@@ -607,19 +545,13 @@ $\therefore a=-1,b=\dfrac{4}{3}$。
|
||||
|
||||
$\lim\limits_{x\to 0^+}\left(\dfrac{e^{\frac{1}{x}}-\pi}{e^{\frac{2}{x}}+1}+a\cdot\arctan\dfrac{1}{x}\right)$
|
||||
|
||||
$= \lim\limits_{x\to 0^+}\left(\dfrac{e^{\frac{1}{x}}-\pi}{e^{\frac{2}{x}}+1}\right)+\lim\limits_{x\to 0^+}\left(a\cdot\arctan\dfrac{1}{x}\right)$
|
||||
$=\lim\limits_{x\to 0^+}\left(\dfrac{e^{\frac{1}{x}}-\pi}{e^{\frac{2}{x}}+1}\right)+\lim\limits_{x\to 0^+}\left(a\cdot\arctan\dfrac{1}{x}\right)$
|
||||
|
||||
$= \lim\limits_{x\to 0^+}\left(\dfrac{0\cdot\left(e^{\frac{2}{x}}\right)^2+e^{\frac{1}{x}}-\pi}{1\cdot\left(e^{\frac{2}{x}}\right)^2+1}\right)+a\cdot\dfrac{\pi}{2}$
|
||||
|
||||
$= a\cdot\dfrac{\pi}{2}$
|
||||
$=\lim\limits_{x\to 0^+}\left(\dfrac{0\cdot\left(e^{\frac{2}{x}}\right)^2+e^{\frac{1}{x}}-\pi}{1\cdot\left(e^{\frac{2}{x}}\right)^2+1}\right)+a\cdot\dfrac{\pi}{2}=a\cdot\dfrac{\pi}{2}$
|
||||
|
||||
\medskip
|
||||
|
||||
$\lim\limits_{x\to 0^-}\left(\dfrac{e^{\frac{1}{x}}-\pi}{e^{\frac{2}{x}}+1}+a\cdot\arctan\dfrac{1}{x}\right)$
|
||||
|
||||
$= -\pi+a\cdot\left(-\dfrac{\pi}{2}\right)$
|
||||
|
||||
$= -\pi-\dfrac{\pi}{2}\cdot a$
|
||||
$\lim\limits_{x\to 0^-}\left(\dfrac{e^{\frac{1}{x}}-\pi}{e^{\frac{2}{x}}+1}+a\cdot\arctan\dfrac{1}{x}\right)=-\pi+a\cdot\left(-\dfrac{\pi}{2}\right)=-\pi-\dfrac{\pi}{2}\cdot a$
|
||||
|
||||
因为极限值具有唯一性,所以$-\pi-\dfrac{\pi}{2}a=\dfrac{\pi}{2}a$,所以$a=-1$,极限值为$-\dfrac{\pi}{2}$。
|
||||
|
||||
@@ -627,21 +559,36 @@ $= -\pi-\dfrac{\pi}{2}\cdot a$
|
||||
|
||||
函数的连续性代表:极限值=函数值。
|
||||
|
||||
\subsubsection{判断函数连续}
|
||||
|
||||
题目给出函数,往往是分段函数,然后判断分段点的连续性。\medskip
|
||||
|
||||
\textbf{例题:}讨论函数$f(x)=\left\{\begin{array}{lcl}
|
||||
\left[\dfrac{(1+x)^{\frac{1}{x}}}{e}\right]^{\frac{1}{x}},& & x>0 \\
|
||||
e^{-\frac{1}{2}}, & & x\leqslant 0
|
||||
\end{array}\right.$在$x=0$处的连续性。
|
||||
|
||||
因为$\lim\limits_{x\to 0^+}f(x)=\lim\limits_{x\to 0^+}\left[\dfrac{(1+x)^{\frac{1}{x}}}{e}\right]^{\frac{1}{x}}=e^{\lim\limits_{x\to 0^+}\frac{1}{x}\ln[\frac{(1+x)^{\frac{1}{x}}}{e}]}$。
|
||||
|
||||
又$\lim\limits_{x\to 0^+}\dfrac{1}{x}\ln\left[\dfrac{(1+x)^{\frac{1}{x}}}{e}\right]=\lim\limits_{x\to 0^+}\dfrac{1}{x}\left[\dfrac{1}{x}\ln(1+x)-1\right]=\lim\limits_{x\to 0^+}\dfrac{\ln(1+x)-x}{x^2}$
|
||||
|
||||
$=\lim\limits_{x\to 0^+}\dfrac{\dfrac{1}{1+x}-1}{2x}=\lim\limits_{x\to 0^+}-\dfrac{1}{2(1+x)}=-\dfrac{1}{2}$。
|
||||
|
||||
$\therefore\lim\limits_{x\to 0^+}f(x)=e^{-\frac{1}{2}}$。
|
||||
|
||||
又$\lim\limits_{x\to 0^-}f(x)=\lim\limits_{x\to 0^-}e^{-\frac{1}{2}}=e^{-\frac{1}{2}}$,且$f(0)=e^{-\frac{1}{2}}$。
|
||||
|
||||
从而$\lim\limits_{x\to 0^+}f(x)=\lim\limits_{x\to 0^-}f(x)=f(0)$,所以$f(x)$在$x=0$处连续。
|
||||
|
||||
\subsubsection{连续性求极限}
|
||||
|
||||
\textbf{例题:}函数在$f(x)$在$x=1$处连续,且$f(1)=1$,求$\lim\limits_{x\to+\infty}\ln\left[2+f\left(x^{\frac{1}{x}}\right)\right]$。
|
||||
|
||||
根据题目,所求的$\lim\limits_{x\to+\infty}\ln\left[2+f\left(x^{\frac{1}{x}}\right)\right]$中,唯一未知的且会随着$x\to+\infty$而变换就是$f\left(x^{\frac{1}{x}}\right)$。如果我们可以求出这个值就可以了。
|
||||
|
||||
而我们对于$f(x)$的具体的关系是未知的,只知道$f(1)=1$。那么先需要考察$\lim\limits_{x\to+\infty}x^{\frac{1}{x}}$的整数最大值。
|
||||
|
||||
$\lim\limits_{x\to+\infty}x^{\frac{1}{x}}$
|
||||
|
||||
$=e^{\lim\limits_{x\to+\infty}\frac{\ln x}{x}}$
|
||||
|
||||
$=e^{\lim\limits_{x\to+\infty}\frac{1}{x}}$
|
||||
|
||||
$=e^0$
|
||||
|
||||
$=1$
|
||||
$\lim\limits_{x\to+\infty}x^{\frac{1}{x}}=e^{\lim\limits_{x\to+\infty}\frac{\ln x}{x}}=e^{\lim\limits_{x\to+\infty}\frac{1}{x}}=e^0=1$
|
||||
|
||||
$\therefore\lim\limits_{x\to+\infty}f(x^{\frac{1}{x}})=f(1)=1$。
|
||||
|
||||
@@ -655,29 +602,19 @@ $\therefore\lim\limits_{x\to+\infty}f(x^{\frac{1}{x}})=f(1)=1$。
|
||||
|
||||
首先看题目,给出的递推式设计到二阶递推,即存在三个数列变量,所以我们必须先求出对应的数列表达式。因为这个表达式涉及三个变量,所以尝试对其进行变型:
|
||||
|
||||
$a_{n+1}-a_n$
|
||||
|
||||
$=\dfrac{a_{n-1}-a_n}{2}$
|
||||
|
||||
$=\left(-\dfrac{1}{2}\right)(a_n-a_{n-1})$
|
||||
|
||||
$=\left(-\dfrac{1}{2}\right)^2(a_{n-1}-a_{n-2})$
|
||||
$a_{n+1}-a_n=\dfrac{a_{n-1}-a_n}{2}=\left(-\dfrac{1}{2}\right)(a_n-a_{n-1})=\left(-\dfrac{1}{2}\right)^2(a_{n-1}-a_{n-2})$
|
||||
|
||||
$=\cdots$
|
||||
|
||||
$=\left(-\dfrac{1}{2}\right)^n(a_1-a_0)$
|
||||
|
||||
$= \left(-\dfrac{1}{2}\right)^n$
|
||||
$=\left(-\dfrac{1}{2}\right)^n(a_1-a_0)=\left(-\dfrac{1}{2}\right)^n$
|
||||
|
||||
然后得到了$a_{n+1}-a_n=\left(-\dfrac{1}{2}\right)^n$,而需要求极限,所以使用列项相消法的逆运算:
|
||||
|
||||
$a_n= (a_n-a_{n-1})+(a_{n-1}-a_{n-2})+\cdots+(a_1-a_0)+a_0$\medskip
|
||||
$a_n=(a_n-a_{n-1})+(a_{n-1}-a_{n-2})+\cdots+(a_1-a_0)+a_0$\medskip
|
||||
|
||||
$= \left(-\dfrac{1}{2}\right)^{n-1} + \left(-\dfrac{1}{2}\right)^{n-2} + \cdots + \left(-\dfrac{1}{2}\right)^0$\medskip
|
||||
$=\left(-\dfrac{1}{2}\right)^{n-1} + \left(-\dfrac{1}{2}\right)^{n-2} + \cdots + \left(-\dfrac{1}{2}\right)^0$\medskip
|
||||
|
||||
$= \dfrac{1\cdot\left(1-\left(-\dfrac{1}{2}\right)^n\right)}{1-\left(-\dfrac{1}{2}\right)}$\medskip
|
||||
|
||||
$= \dfrac{2}{3}\left[1-\left(-\dfrac{1}{2}\right)^n\right]$\medskip
|
||||
$=\dfrac{1\cdot\left(1-\left(-\dfrac{1}{2}\right)^n\right)}{1-\left(-\dfrac{1}{2}\right)}=\dfrac{2}{3}\left[1-\left(-\dfrac{1}{2}\right)^n\right]$\medskip
|
||||
|
||||
$\therefore\lim\limits_{n\to\infty}a_n=\dfrac{2}{3}$
|
||||
|
||||
|
||||
Binary file not shown.
@@ -91,15 +91,11 @@ $f(x)$在$R$上连续。
|
||||
|
||||
$\lim\limits_{x\to 0^+}\dfrac{e^{ax^3}-1}{x-\arcsin x}=6$\medskip
|
||||
|
||||
$\therefore\lim\limits_{x\to 0^+}\dfrac{e^{ax^3}-1}{x-\arcsin x}$\medskip
|
||||
$\therefore\lim\limits_{x\to 0^+}\dfrac{e^{ax^3}-1}{x-\arcsin x}=\lim\limits_{x\to 0^+}\dfrac{ax^3}{x-\arcsin x}$\medskip
|
||||
|
||||
$=\lim\limits_{x\to 0^+}\dfrac{ax^3}{x-\arcsin x}$\medskip
|
||||
$\text{令}t=\arcsin x\Rightarrow=\lim\limits_{x\to 0^+}\dfrac{a\sin^3t}{\sin t-t}=a\lim\limits_{x\to 0^+}\dfrac{t^3}{\sin t-t}=a\lim\limits_{x\to 0^+}\dfrac{3t^2}{\cos t-1}$
|
||||
|
||||
$\text{令}t=\arcsin x\Rightarrow=\lim\limits_{x\to 0^+}\dfrac{a\sin^3t}{\sin t-t}$
|
||||
|
||||
$=a\lim\limits_{x\to 0^+}\dfrac{t^3}{\sin t-t}$\medskip
|
||||
|
||||
$=a\lim\limits_{x\to 0^+}\dfrac{3t^2}{\cos t-1}=-6a=6$。\medskip
|
||||
$=-6a=6$。
|
||||
|
||||
$\therefore a=-1$时$f(x)$在$R$上连续。\medskip
|
||||
|
||||
|
||||
Binary file not shown.
@@ -35,7 +35,7 @@
|
||||
\pagestyle{plain}
|
||||
\setcounter{page}{1}
|
||||
\section{一阶导数}
|
||||
\subsection{幂指函数求导}
|
||||
\subsection{幂指函数导数}
|
||||
|
||||
形如$f(x)^{g(x)}$的幂指函数求导也可以类似幂指函数的求极限方法。既可以取$e$为底的指数也可以取对数。
|
||||
|
||||
@@ -117,15 +117,11 @@ $f'(x)=\dfrac{\dfrac{-x}{1-x}-\ln(1-x)}{x^2}=\dfrac{x-(x-1)\ln(1-x)}{x^2(x-1)}\,
|
||||
|
||||
然后需要求分段点$x=0$处的导数。
|
||||
|
||||
可以由导数的定义:、
|
||||
可以由导数的定义:
|
||||
|
||||
根据导数的定义是某点偏移量的极限值$\lim\limits_{x\to x_0}\dfrac{f(x)-f(x_0)}{x-x_0}$:
|
||||
|
||||
$f'(0)=\lim\limits_{x\to 0}\dfrac{f(x)-f(0)}{x-0}$\medskip
|
||||
|
||||
$=\dfrac{\dfrac{\ln(1-x)}{x}-(-1)}{x-0}$\medskip
|
||||
|
||||
$=\dfrac{\dfrac{\ln(1-x)}{x}+1}{x}$\medskip
|
||||
$f'(0)=\lim\limits_{x\to 0}\dfrac{f(x)-f(0)}{x-0}=\dfrac{\dfrac{\ln(1-x)}{x}-(-1)}{x-0}=\dfrac{\dfrac{\ln(1-x)}{x}+1}{x}$\medskip
|
||||
|
||||
$=\dfrac{\ln(1-x)+x}{x^2}$
|
||||
|
||||
@@ -169,7 +165,49 @@ $\therefore\lim\limits_{x\to 0^+}x^{\alpha-2}=0$。
|
||||
|
||||
$\therefore\alpha-2>0$,从而$\alpha>2$。
|
||||
|
||||
\subsection{已知导数求极限}
|
||||
\section{极限与导数}
|
||||
|
||||
导数的定义由极限产生,所以其之间是可以互相转换的,当求一个导数时可以寻找是否能求出其极限。
|
||||
|
||||
\subsection{极限求导数}
|
||||
|
||||
在导数这一章中的极限不会直接给出极限,而是会给出导数或函数的相关定义,来求极限,再根据导数定义转换为导数。同时要注意这里不止会有导数定义,还会有函数等性质。
|
||||
|
||||
\textbf{例题:}已知$f(x)$是周期为5的连续函数,它在$x=0$的某个邻域内满足关系式:$f(1+\sin x)-3f(1-\sin x)= 8x+o(x)$,且$f(x)$在$x=1$处可导,求曲线$y=f(x)$在点$(6,f(6))$处的切线方程。
|
||||
|
||||
因为这是个函数等式,而我们最后要求的是一个导数,所以先尝试对其直接求极限,令$x\to0$:
|
||||
|
||||
$f(1)-3f(1)=0$,从而得到了一个函数值$f(1)=0$。
|
||||
|
||||
然后再对这个式子思考,等式右边为$8x$,而除以$x$就变成了8,而再对其求极限,右边就彻底变成了一个常数8:
|
||||
|
||||
$\lim\limits_{x\to 0}\dfrac{f(1+\sin x)-3f(1-\sin x)}{x}=8$。对式子左边进行变形:
|
||||
|
||||
$\lim\limits_{x\to 0}\dfrac{f(1+\sin x)-3f(1-\sin x)}{x}=\lim\limits_{x\to 0}\dfrac{f(1+\sin x)-3f(1-\sin x)}{\sin x}$。
|
||||
|
||||
令$t=\sin x$:
|
||||
|
||||
$=\lim\limits_{t\to 0}\dfrac{f(1+t)-3f(1-t)}{t}=\lim\limits_{t\to 0}\dfrac{f(1+t)-f(1)}{t}+3\lim\limits_{t\to 0}\dfrac{f(1-t)-f(1)}{-t}$。
|
||||
|
||||
因为$t\to 0$,所以$1-t$和$1+t$都是$t=1$时的导数$f'(x)$的定义:$=4f'(1)=8$,从而$f'(1)=2$。
|
||||
|
||||
由$f(x)$的周期为5,所以$f(6)=f(1)=0$,$f'(6)=f'(1)=2$,所以曲线$y=f(x)$在$(6,f(6))$即$(6,0)$处的切线方程为$y-0=2(x-6)$即$2x-y-12=0$。
|
||||
|
||||
15.当正在高度H水平飞行的飞机开始向机场跑道下降时,如图2-16所示从飞机到北场的水平地面距离为L.假设飞机下降的路径为三次函
|
||||
|
||||
数y=ax' +bx2 +cx+d的图形,其中yl..=H.y1..o=0.试
|
||||
|
||||
确定飞机的降落路径.
|
||||
|
||||
16.甲船以6 km/h的速率向东行驶,乙船以8 km/h
|
||||
|
||||
的速事向南行驶在中午十二点整,乙船位于甲船之北
|
||||
|
||||
L01
|
||||
|
||||
16 km处问下午一点整两船相离的速率为多少?
|
||||
|
||||
\subsection{导数求极限}
|
||||
|
||||
题目会给出对应的导数以及相关条件,并要求求一个极限,这个极限式子并不是个随机的式子,而一个是与导数定义相关的极限式子,所需要的就是将极限式子转换为导数定义的相关式子。
|
||||
|
||||
@@ -183,9 +221,7 @@ $\therefore\alpha-2>0$,从而$\alpha>2$。
|
||||
|
||||
然后需要转换目标的极限式子,因为目标式子倒过来的式子类似于导数定义的$f'(x)=\lim\limits_{\Delta x\to 0}\dfrac{f(x+\Delta x)-f(x)}{\Delta x}$结构。所以我们可以先求其倒数式子:\medskip
|
||||
|
||||
$=\lim\limits_{h\to 0}\dfrac{f(5-2\sin h)-f(5)}{h}$
|
||||
|
||||
$=\lim\limits_{h\to 0}\dfrac{f(5-2\sin h)-f(5)}{-2\sin h}\cdot\dfrac{-2\sin h}{h}$
|
||||
$=\lim\limits_{h\to 0}\dfrac{f(5-2\sin h)-f(5)}{h}=\lim\limits_{h\to 0}\dfrac{f(5-2\sin h)-f(5)}{-2\sin h}\cdot\dfrac{-2\sin h}{h}$
|
||||
|
||||
$=-2f'(5)=-2\times 1=-2$
|
||||
|
||||
@@ -199,17 +235,9 @@ $\therefore\lim\limits_{h\to 0}\dfrac{h}{f(5-2\sin h)-f(5)}=-\dfrac{1}{2}$。
|
||||
|
||||
设$\dfrac{1}{n}=x$,则:
|
||||
|
||||
$=\lim\limits_{x\to 0}(f(x))^{\frac{x}{1-\cos x}}$
|
||||
$=\lim\limits_{x\to 0}(f(x))^{\frac{x}{1-\cos x}}=e^{\lim\limits_{x\to 0}\frac{x}{1-\cos x}\ln f(x)}=e^{2\lim\limits_{x\to 0}\frac{\ln f(x)}{x}}=e^{2\lim\limits_{x\to 0}\frac{f(x)-1}{x}}$
|
||||
|
||||
$=e^{\lim\limits_{x\to 0}\frac{x}{1-\cos x}\ln f(x)}$
|
||||
|
||||
$=e^{2\lim\limits_{x\to 0}\frac{\ln f(x)}{x}}$
|
||||
|
||||
$=e^{2\lim\limits_{x\to 0}\frac{f(x)-1}{x}}$
|
||||
|
||||
$=e^{2\lim\limits_{x\to 0}\frac{f(x)-f(0)}{x-0}}$
|
||||
|
||||
$=e^{2f'(0)}=e^6$。
|
||||
$=e^{2\lim\limits_{x\to 0}\frac{f(x)-f(0)}{x-0}}=e^{2f'(0)}=e^6$。
|
||||
|
||||
\section{高阶导数}
|
||||
|
||||
@@ -257,12 +285,22 @@ $\quad\quad\quad+x^2(x+1)^2(x+2)^2\cdots 2(x+n)$
|
||||
|
||||
因为原函数的一阶导数是$\dfrac{\textrm{d}y}{\textrm{d}x}$,而反函数就是对原函数的$xy$对调,所以其反函数的一阶导数为$\dfrac{\textrm{d}x}{\textrm{d}y}$。
|
||||
|
||||
当求反函数的高阶导数时需要将分子分母同时除以$\textrm{d}x$。
|
||||
|
||||
\textbf{例题:}已知$y=x+e^x$,求其反函数的二阶导数。
|
||||
|
||||
$y=x+e^x$的反函数的一阶导数为$\dfrac{\textrm{d}x}{\textrm{d}y}=\dfrac{1}{1+e^x}$。
|
||||
$y=x+e^x$的反函数的一阶导数为$\dfrac{\textrm{d}x}{\textrm{d}y}=\dfrac{1}{1+e^x}$。\medskip
|
||||
|
||||
所以二阶导数为$\dfrac{\textrm{d}^2x}{\textrm{d}y^2}=\dfrac{\textrm{d}\left(\dfrac{1}{1+e^{x}}\right)}{\textrm{d}y}=\dfrac{\dfrac{\textrm{d}\left(\dfrac{1}{1+e^{x}}\right)}{\textrm{d}x}}{\dfrac{\textrm{d}y}{\textrm{d}x}}=-\dfrac{e^x}{(1+e^x)^3}$。
|
||||
|
||||
\textbf{例题:}已知$\dfrac{\textrm{d}x}{\textrm{d}y}=\dfrac{1}{y'}$,求$\dfrac{\textrm{d}^2x}{\textrm{d}y^2}$和$\dfrac{\textrm{d}^3x}{\textrm{d}y^3}$。
|
||||
|
||||
其实就是求$\dfrac{\textrm{d}^2x}{\textrm{d}y^2}$和$\dfrac{\textrm{d}^3x}{\textrm{d}y^3}$,$\dfrac{\textrm{d}x}{\textrm{d}y}=\dfrac{1}{y'}$这个条件只是让我们用$y'$来表示结果而已。
|
||||
|
||||
$\dfrac{\textrm{d}^2x}{\textrm{d}y^2}=\dfrac{\textrm{d}\dfrac{\textrm{d}x}{\textrm{d}y}}{\textrm{d}y}=\dfrac{\dfrac{\textrm{d}\dfrac{\textrm{d}x}{\textrm{d}y}}{\textrm{d}x}}{\dfrac{\textrm{d}y}{\textrm{d}x}}=\dfrac{-\dfrac{y''}{(y')^2}}{y'}=-\dfrac{y''}{(y')^3}$。\medskip
|
||||
|
||||
$\dfrac{\textrm{d}^3x}{\textrm{d}y^3}=\dfrac{\textrm{d}\dfrac{\textrm{d}^2x}{\textrm{d}^2y}}{\textrm{d}y}=\dfrac{\dfrac{\textrm{d}\dfrac{\textrm{d}^2x}{\textrm{d}^2y}}{\textrm{d}x}}{\dfrac{\textrm{d}y}{\textrm{d}x}}=\dfrac{-\dfrac{y'''y'-3(y'')^2}{(y')^4}}{y'}=\dfrac{3(y'')^2-y'y'''}{(y')^5}$。
|
||||
|
||||
\section{微分}
|
||||
|
||||
\section{隐函数与参数方程}
|
||||
@@ -271,6 +309,22 @@ $y=x+e^x$的反函数的一阶导数为$\dfrac{\textrm{d}x}{\textrm{d}y}=\dfrac{
|
||||
|
||||
$\dfrac{\textrm{d}y}{\textrm{d}x}=\dfrac{\dfrac{\textrm{d}y}{\textrm{d}t}}{\dfrac{\textrm{d}x}{\textrm{d}t}}$。
|
||||
|
||||
\subsection{隐函数应用}
|
||||
|
||||
对于隐函数的应用题,最重要的是找到等价于$\textrm{d}x$和$\textrm{d}y$的两个相关变量。最简单的就是根据题目最后面的所求问题所涉及的变量设置其为变量和因变量。
|
||||
|
||||
\textbf{例题:}落在平静水面上的石头,产生同心波纹。若最外一圈波半径的增大速率总是6m/s,问在2s末扰动水面面积增大的速率为多少?
|
||||
|
||||
首先根据题目最后的要求的是面积,所以肯定要设一个面积变量,随时间变动而改变,所以也一定会设一个时间变量,同时还给出一个条件是半径增大速度,所以也会有一个半径的变量。同时要求的是面积增大速率,正好跟另外两个变量相关,时间跟半径和面积都相关,所以时间就是中间变量。
|
||||
|
||||
从而设最外一圈波的半径为$r=r(t)$,圆的面积$S=S(t)$。根据$S$和$r$的公式$S=\pi r^2$,因为求的是随时间变化的速率,所以其两端分别对$t$求导,得:
|
||||
|
||||
$\dfrac{\textrm{d}S}{\textrm{d}t}=2\pi r\dfrac{\textrm{d}r}{\textrm{d}t}$。当$t=2$时,$r=6\times2=12$,代入上式得:\medskip
|
||||
|
||||
$\dfrac{\textrm{d}S}{\textrm{d}t}\bigg|_{t=2}=2\pi\cdot12\cdot6=144\pi$。
|
||||
|
||||
\subsection{分段参数方程}
|
||||
|
||||
\textbf{例题:}已知$y=y(x)$由参数方程$\left\{\begin{array}{lcl}
|
||||
x=\dfrac{1}{2}\ln(1+t^2) \\
|
||||
y=\arctan t
|
||||
|
||||
Binary file not shown.
@@ -887,7 +887,7 @@ $a^\alpha\cdot a^\beta=a^{\alpha+\beta},\dfrac{a^\alpha}{a^\beta}=a^{\alpha-\bet
|
||||
|
||||
如下面这个题(先不要求能直接证明):
|
||||
|
||||
\textbf{例题4:}证明$\dfrac{1}{x+1}<\ln(1+\dfrac{1}{x})<\dfrac{1}{x}$,其中$x>0$。
|
||||
\textbf{例题:}证明$\dfrac{1}{x+1}<\ln(1+\dfrac{1}{x})<\dfrac{1}{x}$,其中$x>0$。
|
||||
|
||||
首先因为证明中间项无法进行直接处理,又看到是一个对数,所以进行通分:$\ln(1+\dfrac{1}{x})=\ln\dfrac{x+1}{x}=\ln(x+1)-\ln x$。
|
||||
|
||||
@@ -993,7 +993,7 @@ $a^\alpha\cdot a^\beta=a^{\alpha+\beta},\dfrac{a^\alpha}{a^\beta}=a^{\alpha-\bet
|
||||
|
||||
以后的华里士公式(点火公式)会使用到,如下面的题目:
|
||||
|
||||
\textbf{例题5:}计算$\int_0^{\frac{\pi}{2}}\sin^{10}x\textrm{d}x$与$\int_0^{\frac{\pi}{2}}\cos^9x\textrm{d}x$。\medskip
|
||||
\textbf{例题:}计算$\int_0^{\frac{\pi}{2}}\sin^{10}x\textrm{d}x$与$\int_0^{\frac{\pi}{2}}\cos^9x\textrm{d}x$。\medskip
|
||||
|
||||
原式1为偶数次幂,所以$=\dfrac{9}{10}\cdot\dfrac{7}{8}\cdot\dfrac{5}{6}\cdot\dfrac{3}{4}\cdot\dfrac{1}{2}\cdot\dfrac{\pi}{2}=\dfrac{\pi}{2}\cdot\dfrac{9!!}{10!!}$。\medskip
|
||||
|
||||
@@ -1027,7 +1027,7 @@ $a,b,c>0$:
|
||||
\item $\sqrt[3]{abc}\leqslant\dfrac{a+b+c}{3}\leqslant\dfrac{a^2+b^2+c^2}{3}$。
|
||||
\end{enumerate}
|
||||
|
||||
\textbf{例题6:}证明函数$f(x)=\dfrac{x}{1+x^2}$在$(-\infty,+\infty)$内有界。
|
||||
\textbf{例题:}证明函数$f(x)=\dfrac{x}{1+x^2}$在$(-\infty,+\infty)$内有界。
|
||||
|
||||
可以使用极限,若极限存在则函数有界,这里使用有界性定义与不等式来完成。
|
||||
|
||||
|
||||
Binary file not shown.
@@ -442,15 +442,7 @@ $\therefore \ln\left(1+\dfrac{\tan x}{x}-1\right)\sim\dfrac{\tan x}{x}-1$,$\df
|
||||
|
||||
又根据泰勒展开$\tan x-x=x+\dfrac{x^3}{3}+o(x^3)-x-0\cdot x^3=\dfrac{x^3}{3}$。
|
||||
|
||||
$\therefore$ \medskip
|
||||
|
||||
$e^{\lim\limits_{x\to 0}\frac{1}{x^2}\ln\frac{\tan x}{x}}$
|
||||
|
||||
$=e^{\lim\limits_{x\to 0}\frac{1}{x^2}\frac{\tan x-x}{x}}$
|
||||
|
||||
$=e^{\lim\limits_{x\to 0}\frac{1}{x^2}\cdot\frac{x^2}{3}}$
|
||||
|
||||
$= e^{\frac{1}{3}}$
|
||||
$\therefore e^{\lim\limits_{x\to 0}\frac{1}{x^2}\ln\frac{\tan x}{x}}=e^{\lim\limits_{x\to 0}\frac{1}{x^2}\frac{\tan x-x}{x}}=e^{\lim\limits_{x\to 0}\frac{1}{x^2}\cdot\frac{x^2}{3}}=e^{\frac{1}{3}}$
|
||||
|
||||
根据海涅定理:取$x=\dfrac{1}{n},n\to\infty$,$\lim\limits_{n\to\infty}\left(n\tan\dfrac{1}{n}\right)^{n^2}=e^{\frac{1}{3}}$。
|
||||
|
||||
@@ -887,21 +879,9 @@ $\therefore\lim\limits_{x\to 0}\dfrac{\sin x}{x}=1$。
|
||||
|
||||
证明:
|
||||
|
||||
$\lim\limits_{x\to\infty}\left(1+\dfrac{1}{x}\right)^x$\medskip
|
||||
$\lim\limits_{x\to\infty}\left(1+\dfrac{1}{x}\right)^x=\lim\limits_{x\to\infty}e^{\ln(1+\frac{1}{x})^x}=\lim\limits_{x\to\infty}e^{x\ln(1+\frac{1}{x})}=e^{\lim\limits_{x\to\infty}x\ln(1+\frac{1}{x})}=e^{\lim\limits_{x\to\infty}\frac{\ln(1+\frac{1}{x})}{\frac{1}{x}}}$
|
||||
|
||||
$=\lim\limits_{x\to\infty}e^{\ln(1+\frac{1}{x})^x}$
|
||||
|
||||
$=\lim\limits_{x\to\infty}e^{x\ln(1+\frac{1}{x})}$
|
||||
|
||||
$=e^{\lim\limits_{x\to\infty}x\ln(1+\frac{1}{x})}$
|
||||
|
||||
$=e^{\lim\limits_{x\to\infty}\frac{\ln(1+\frac{1}{x})}{\frac{1}{x}}}$
|
||||
|
||||
$=e^{\lim\limits_{x\to\infty}\frac{\left(\frac{1}{1+\frac{1}{x}}\right)\cdot\left(-\frac{1}{x^2}\right)}{-\frac{1}{x^2}}}$
|
||||
|
||||
$=e^{\lim\limits_{x\to\infty}\frac{1}{1+x}}$
|
||||
|
||||
$=e$
|
||||
$=e^{\lim\limits_{x\to\infty}\frac{\left(\frac{1}{1+\frac{1}{x}}\right)\cdot\left(-\frac{1}{x^2}\right)}{-\frac{1}{x^2}}}=e^{\lim\limits_{x\to\infty}\frac{1}{1+x}}=e$\medskip
|
||||
|
||||
从而$\lim\limits_{\Delta\to\infty}\left(1+\dfrac{1}{\Delta}\right)^\Delta=e$与$\lim\limits_{\Delta\to 0}\left(1+\Delta\right)^{\frac{1}{\Delta}}=e(\Delta\neq 0)$。
|
||||
|
||||
|
||||
Binary file not shown.
@@ -116,15 +116,9 @@ $\therefore f'(\dfrac{3}{2})>f''(0)>f(-\dfrac{1}{2})$。\medskip
|
||||
|
||||
\textbf{例题:}$\left(x^\alpha\right)'=\alpha x^{\alpha-1}(x>0)$。\medskip
|
||||
|
||||
$\lim\limits_{\Delta x\to 0}\dfrac{f(x+\Delta x)-f(x)}{\Delta x}$\medskip
|
||||
$\lim\limits_{\Delta x\to 0}\dfrac{f(x+\Delta x)-f(x)}{\Delta x}=\lim\limits_{\Delta x\to 0}\dfrac{\left(x+\Delta x\right)^\alpha-x^\alpha}{\Delta x}$\medskip
|
||||
|
||||
$=\lim\limits_{\Delta x\to 0}\dfrac{\left(x+\Delta x\right)^\alpha-x^\alpha}{\Delta x}$\medskip
|
||||
|
||||
$=\lim\limits_{\Delta x\to 0}\dfrac{x^\alpha\left[\left(1+\dfrac{\Delta x}{x}\right)^\alpha-1\right]}{\Delta x}$\medskip
|
||||
|
||||
$=\lim\limits_{\Delta x\to 0}\dfrac{x^\alpha\cdot\alpha\cdot\dfrac{\Delta x}{x}}{\Delta x}$\medskip
|
||||
|
||||
$=\alpha x^{\alpha-1}$
|
||||
$=\lim\limits_{\Delta x\to 0}\dfrac{x^\alpha\left[\left(1+\dfrac{\Delta x}{x}\right)^\alpha-1\right]}{\Delta x}=\lim\limits_{\Delta x\to 0}\dfrac{x^\alpha\cdot\alpha\cdot\dfrac{\Delta x}{x}}{\Delta x}=\alpha x^{\alpha-1}$
|
||||
|
||||
\subsection{导数的几何意义}
|
||||
|
||||
@@ -144,13 +138,7 @@ $=\alpha x^{\alpha-1}$
|
||||
|
||||
可导定义:$f'(x)=\lim\limits_{\Delta x\to 0}\dfrac{f(x+\Delta x)-f(x)}{\Delta x} = A$
|
||||
|
||||
$\lim\limits_{\Delta x\to 0}f(x+\Delta x)-f(x)$
|
||||
|
||||
$=\lim\limits_{\Delta x\to 0}\dfrac{f(x+\Delta x)-f(x)}{\Delta x}\cdot\Delta x$
|
||||
|
||||
$=A\cdot 0$
|
||||
|
||||
$=0$
|
||||
$\lim\limits_{\Delta x\to 0}f(x+\Delta x)-f(x)=\lim\limits_{\Delta x\to 0}\dfrac{f(x+\Delta x)-f(x)}{\Delta x}\cdot\Delta x=A\cdot 0=0$
|
||||
|
||||
\textbf{例题:}若$f(x)$在$x=x_0$处连续,且$\lim\limits_{x\to x_0}\dfrac{f(x)}{x-x_0}=A$,则$f(x_0)=0$且$f'(x_0)=A$。
|
||||
|
||||
@@ -178,11 +166,7 @@ $=0$
|
||||
|
||||
$(u\cdot v)'$
|
||||
|
||||
$=f'(x)$
|
||||
|
||||
$=\lim\limits_{\Delta x\to 0}\dfrac{f(x+\Delta x)-f(x)}{\Delta x}$
|
||||
|
||||
$=\lim\limits_{\Delta x\to 0}\dfrac{u(x+\Delta x)v(x+\Delta x)-u(x)v(x)}{\Delta x}$
|
||||
$=f'(x)=\lim\limits_{\Delta x\to 0}\dfrac{f(x+\Delta x)-f(x)}{\Delta x}=\lim\limits_{\Delta x\to 0}\dfrac{u(x+\Delta x)v(x+\Delta x)-u(x)v(x)}{\Delta x}$
|
||||
|
||||
$=\lim\limits_{\Delta x\to 0}\dfrac{u(x+\Delta x)v(x+\Delta x)-u(x)v(x+\Delta x)+u(x)v(x+\Delta x)-u(x)v(x)}{\Delta x}$
|
||||
|
||||
@@ -210,23 +194,11 @@ $\therefore\dfrac{\textrm{d}\arcsin x}{\textrm{d}x}=\dfrac{1}{\dfrac{\textrm{d}\
|
||||
|
||||
$\therefore\dfrac{\textrm{d}\arctan x}{\textrm{d}x}=\dfrac{1}{\dfrac{\textrm{d}\tan y}{\textrm{d}y}}=\dfrac{1}{\sec^2y}=\dfrac{1}{1+\tan^2y}=\dfrac{1}{1+x^2}$。\medskip
|
||||
|
||||
二阶反函数导数\textcolor{aqua}{\textbf{定理:}}:
|
||||
二阶反函数导数\textcolor{aqua}{\textbf{定理:}}:\medskip
|
||||
|
||||
$f''(x)$
|
||||
$f''(x)=y''_{xx}=\dfrac{\textrm{d}\left(\dfrac{\textrm{d}y}{\textrm{d}x}\right)}{\textrm{d}x}=\dfrac{\textrm{d}^2y}{\textrm{d}x^2}=\dfrac{\textrm{d}\left(\dfrac{1}{\varphi'(y)}\right)}{\textrm{d}x}=\dfrac{\textrm{d}\left(\dfrac{1}{\varphi'(y)}\right)}{\textrm{d}y}\cdot\dfrac{\textrm{d}y}{\textrm{d}x}$
|
||||
|
||||
$=y''_{xx}$\medskip
|
||||
|
||||
$=\dfrac{\textrm{d}\left(\dfrac{\textrm{d}y}{\textrm{d}x}\right)}{\textrm{d}x}$\medskip
|
||||
|
||||
$=\dfrac{\textrm{d}^2y}{\textrm{d}x^2}$\medskip
|
||||
|
||||
$=\dfrac{\textrm{d}\left(\dfrac{1}{\varphi'(y)}\right)}{\textrm{d}x}$\medskip
|
||||
|
||||
$=\dfrac{\textrm{d}\left(\dfrac{1}{\varphi'(y)}\right)}{\textrm{d}y}\cdot\dfrac{\textrm{d}y}{\textrm{d}x}$\medskip
|
||||
|
||||
$=-\dfrac{x_{yy}''}{(x_y')^2}\cdot\dfrac{1}{x_y'}$\medskip
|
||||
|
||||
$=-\dfrac{x_{yy}''}{(x_y')^3}$\medskip
|
||||
$=-\dfrac{x_{yy}''}{(x_y')^2}\cdot\dfrac{1}{x_y'}=-\dfrac{x_{yy}''}{(x_y')^3}$\medskip
|
||||
|
||||
其中$\textrm{d}x\cdot\textrm{d}x=(\textrm{d}x)^2=\textrm{d}x^2$称为微分的幂,而$\textrm{d}(x^2)$叫幂的微分。
|
||||
|
||||
@@ -256,15 +228,7 @@ $\therefore$根据导数的四则运算,需要导数的乘积为每一项求
|
||||
|
||||
$\therefore f'(1)$
|
||||
|
||||
$=f'(x)\vert_{x=1}$\medskip
|
||||
|
||||
$=\dfrac{\pi}{2}\cdot g(1)+0\cdot g'(x)$\medskip
|
||||
|
||||
$=\dfrac{\pi}{2}\cdot g(1)$\medskip
|
||||
|
||||
$=\dfrac{\pi}{2}(-1)(-2)\cdots(-99)$
|
||||
|
||||
$=-\dfrac{\pi}{2}\cdot 99!$
|
||||
$=f'(x)\vert_{x=1}=\dfrac{\pi}{2}\cdot g(1)+0\cdot g'(x)=\dfrac{\pi}{2}\cdot g(1)=\dfrac{\pi}{2}(-1)(-2)\cdots(-99)=-\dfrac{\pi}{2}\cdot 99!$
|
||||
|
||||
\subsection{分段函数的导数}
|
||||
|
||||
|
||||
Binary file not shown.
@@ -125,7 +125,7 @@ $\text{罗尔定理}\xrightleftharpoons[\text{特例:}f(a)=f(b)]{\text{泛化
|
||||
|
||||
\section{洛必达法则}
|
||||
|
||||
若当$x\to a$或$x\to\infty$时两个函数$f(x)F(x)$都趋向0或无穷大,那么极限$\lim\limits_{x\to a/\infty}\dfrac{f(x)}{F(x)}$可能存在,也可能不存在,这种极限就是不定式。\medskip
|
||||
若当$x\to a$或$x\to\infty$时两个函数$f(x)F(x)$都趋向0或无穷大,那么极限$\lim\limits_{x\to \frac{a}{\infty}}\dfrac{f(x)}{F(x)}$可能存在,也可能不存在,这种极限就是不定式。\medskip
|
||||
|
||||
\textcolor{aqua}{\textbf{定理:}}
|
||||
|
||||
@@ -149,11 +149,7 @@ $\text{罗尔定理}\xrightleftharpoons[\text{特例:}f(a)=f(b)]{\text{泛化
|
||||
|
||||
而使用洛必达法则:\medskip
|
||||
|
||||
$\lim\limits_{x\to 0}\dfrac{x^2\cdot\sin\dfrac{1}{x}}{x}$
|
||||
|
||||
$=\lim\limits_{x\to 0}\left(2x\cdot\sin\dfrac{1}{x}-\cos\dfrac{1}{x}\right)$
|
||||
|
||||
$=\lim\limits_{x\to 0}\left(-\cos\dfrac{1}{x}\right)=\text{不存在}$
|
||||
$\lim\limits_{x\to 0}\dfrac{x^2\cdot\sin\dfrac{1}{x}}{x}=\lim\limits_{x\to 0}\left(2x\cdot\sin\dfrac{1}{x}-\cos\dfrac{1}{x}\right)=\lim\limits_{x\to 0}\left(-\cos\dfrac{1}{x}\right)=\text{不存在}$
|
||||
|
||||
\section{泰勒公式}
|
||||
|
||||
@@ -225,13 +221,7 @@ $R_n(x)=\dfrac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$就是函数的拉格朗日
|
||||
|
||||
如:
|
||||
|
||||
$\lim\limits_{x\to 0}\dfrac{[\sin x-\sin(\sin x)]\sin x}{x^4}$
|
||||
|
||||
$=\dfrac{\dfrac{1}{6}\sin^3x\cdot\sin x}{x^4}$
|
||||
|
||||
$=\dfrac{\dfrac{1}{6}\sin^4x}{x^4}$
|
||||
|
||||
$=\dfrac{1}{6}$
|
||||
$\lim\limits_{x\to 0}\dfrac{[\sin x-\sin(\sin x)]\sin x}{x^4}=\dfrac{\dfrac{1}{6}\sin^3x\cdot\sin x}{x^4}=\dfrac{\dfrac{1}{6}\sin^4x}{x^4}=\dfrac{1}{6}$
|
||||
|
||||
\subsubsection{泰勒公式计算}
|
||||
|
||||
@@ -266,13 +256,7 @@ $\therefore \dfrac{y^{(6)}(0)}{6!}=-\dfrac{1}{6}\Rightarrow y^{(6)}(0)=-5!=-120$
|
||||
|
||||
如$\lim\limits_{x\to 0}\dfrac{x-\sin x}{x^3}$展开为三次:\medskip
|
||||
|
||||
$\lim\limits_{x\to 0}\dfrac{x-\sin x}{x^3}$
|
||||
|
||||
$=\lim\limits_{x\to 0}\dfrac{x-\left[x-\dfrac{1}{6}x^3+o(x^3)\right]}{x^3}$\medskip
|
||||
|
||||
$=\lim\limits_{x\to 0}\dfrac{\dfrac{1}{6}x^3+o(x^3)}{x^3}$\medskip
|
||||
|
||||
$=\dfrac{1}{6}$
|
||||
$\lim\limits_{x\to 0}\dfrac{x-\sin x}{x^3}=\lim\limits_{x\to 0}\dfrac{x-\left[x-\dfrac{1}{6}x^3+o(x^3)\right]}{x^3}=\lim\limits_{x\to 0}\dfrac{\dfrac{1}{6}x^3+o(x^3)}{x^3}=\dfrac{1}{6}$
|
||||
|
||||
\subsubsection{\texorpdfstring{$A-B$}\ 型,幂次最低}
|
||||
|
||||
@@ -282,14 +266,9 @@ $=\dfrac{1}{6}$
|
||||
|
||||
泰勒展开:
|
||||
|
||||
$
|
||||
\begin{aligned}
|
||||
& \cos x-e^{-\frac{x^2}{2}} \\
|
||||
& = 1-\dfrac{x^2}{2}+\dfrac{1}{24}x^4+o(x^4)-\left(1-\dfrac{x^2}{2}+\dfrac{1}{8}x^4+o(x^4)\right) \\
|
||||
& = -\dfrac{1}{12}x^4+o(x^4) \\
|
||||
& \sim -\dfrac{1}{12}x^4
|
||||
\end{aligned}
|
||||
$
|
||||
$\cos x-e^{-\frac{x^2}{2}}= 1-\dfrac{x^2}{2}+\dfrac{1}{24}x^4+o(x^4)-\left(1-\dfrac{x^2}{2}+\dfrac{1}{8}x^4+o(x^4)\right)$
|
||||
|
||||
$=-\dfrac{1}{12}x^4+o(x^4)\sim -\dfrac{1}{12}x^4$
|
||||
|
||||
$\therefore a=-\dfrac{1}{12},b=4$。
|
||||
|
||||
@@ -301,33 +280,11 @@ $\therefore e^{x^4}-1\sim x^4$。
|
||||
|
||||
然后泰勒展开:
|
||||
|
||||
$x-\sin x$
|
||||
$x-\sin x=1\cdot x^1+0\cdot x^3 - (1\cdot x^1-\dfrac{1}{6}x^3+o(x^3))= \dfrac{1}{6}x^3+o(x^3)\sim\dfrac{1}{6}x^3$
|
||||
|
||||
$= 1\cdot x^1+0\cdot x^3 - (1\cdot x^1-\dfrac{1}{6}x^3+o(x^3))$
|
||||
$x+\sin x=x-(-\sin x)=1\cdot x^1-(-1\cdot x^1)+o(x)=2x+o(x)\sim 2x$ \medskip
|
||||
|
||||
$= \dfrac{1}{6}x^3+o(x^3)$
|
||||
|
||||
$\sim \dfrac{1}{6}x^3$
|
||||
|
||||
$x+\sin x$
|
||||
|
||||
$=x-(-\sin x)$
|
||||
|
||||
$=1\cdot x^1-(-1\cdot x^1)+o(x)$
|
||||
|
||||
$=2x+o(x)$
|
||||
|
||||
$\sim 2x$
|
||||
|
||||
$\therefore$
|
||||
|
||||
$\lim\limits_{x\to 0}\dfrac{\sin^2x-x^2}{e^{x^4}-1}$\medskip
|
||||
|
||||
$=\lim\limits_{x\to 0}\dfrac{(\sin x+x)(\sin x-x)}{x^4}$\medskip
|
||||
|
||||
$=\lim\limits_{x\to 0}\dfrac{2x\cdot\left(-\dfrac{1}{6}x^3\right)}{x^4}$\medskip
|
||||
|
||||
$=-\dfrac{1}{3}$
|
||||
$\therefore\lim\limits_{x\to 0}\dfrac{\sin^2x-x^2}{e^{x^4}-1}=\lim\limits_{x\to 0}\dfrac{(\sin x+x)(\sin x-x)}{x^4}=\lim\limits_{x\to 0}\dfrac{2x\cdot\left(-\dfrac{1}{6}x^3\right)}{x^4}=-\dfrac{1}{3}$
|
||||
|
||||
\section{函数单调性与曲线凹凸性}
|
||||
|
||||
@@ -384,15 +341,9 @@ $\therefore$在$(0,+\infty]$上$g(x)>g(0)=0$,即$\sin x>x-\dfrac{x^3}{6}$。
|
||||
|
||||
不妨设$x_1<x_2$,且$\dfrac{x_1+x_2}{2}=x_0$。
|
||||
|
||||
$f(x_1)+f(x_2)-2(x_0)$
|
||||
$f(x_1)+f(x_2)-2(x_0)=[f(x_2)-f(x_0)]-[f(x_1)-f(x_0)]$
|
||||
|
||||
$=[f(x_2)-f(x_0)]-[f(x_1)-f(x_0)]$
|
||||
|
||||
$\xRightarrow{\text{拉格朗日中值定理}}$
|
||||
|
||||
$=f'(\xi_2)(x_2-x_0)-f'(\xi_1)(x_0-x_1)$
|
||||
|
||||
$=\dfrac{x_2-x_1}{2}[f'(\xi_2)-f'(\xi_1)]>0$
|
||||
$\xRightarrow{\text{拉格朗日中值定理}}=f'(\xi_2)(x_2-x_0)-f'(\xi_1)(x_0-x_1)=\dfrac{x_2-x_1}{2}[f'(\xi_2)-f'(\xi_1)]>0$
|
||||
|
||||
$\therefore f''(x)>0\Rightarrow f(\dfrac{x_1+x_2}{2})<\dfrac{f(x_1)+f(x_2)}{2}$。
|
||||
|
||||
|
||||
Binary file not shown.
@@ -446,19 +446,13 @@ $\textrm{d}S=\left[(y+4)-\dfrac{y^2}{2}\right]\textrm{d}y$。
|
||||
|
||||
因为无法计算对于$x$的表达式,所以使用参数方程代入,并改变上下限$S$:
|
||||
|
||||
$=\int_0^{2\pi}a(1-\cos t)\,\textrm{d}[a(t-\sin t)]$
|
||||
$=\int_0^{2\pi}a(1-\cos t)\,\textrm{d}[a(t-\sin t)]=\int_0^{2\pi}a^2(1-\cos t)^2\,\textrm{d}t$
|
||||
|
||||
$=\int_0^{2\pi}a^2(1-\cos t)^2\,\textrm{d}t$
|
||||
|
||||
$=a^2\displaystyle{\int_0^{2\pi}\left(2\sin^2\dfrac{t}{2}\right)^2\textrm{d}t}$(消去里面的1)
|
||||
|
||||
$=4a^2\displaystyle{\int_0^{2\pi}\sin^4\dfrac{t}{2}\,\textrm{d}t}$
|
||||
$=a^2\displaystyle{\int_0^{2\pi}\left(2\sin^2\dfrac{t}{2}\right)^2\textrm{d}t}\,\text{(消去里面的1)}=4a^2\displaystyle{\int_0^{2\pi}\sin^4\dfrac{t}{2}\,\textrm{d}t}$
|
||||
|
||||
令$u=\dfrac{t}{2}$,从而$\textrm{d}t=2\textrm{d}u$,从而$u\in[0,\pi]$。
|
||||
|
||||
$=8a^2\int_0^\pi\sin^4u\,\textrm{d}u$
|
||||
|
||||
$=16a^2\int_0^{\frac{\pi}{2}}\sin^4u\,\textrm{d}u$(积分可加性拆分为两个相同限的项)
|
||||
$=8a^2\int_0^\pi\sin^4u\,\textrm{d}u=16a^2\int_0^{\frac{\pi}{2}}\sin^4u\,\textrm{d}u$(积分可加性拆分为两个相同限的项)
|
||||
|
||||
$=16a^2\cdot\dfrac{3}{4}\cdot\dfrac{1}{2}\cdot\dfrac{\pi}{2}=3a^2\pi$(点火公式)。
|
||||
|
||||
@@ -476,13 +470,9 @@ $=16a^2\cdot\dfrac{3}{4}\cdot\dfrac{1}{2}\cdot\dfrac{\pi}{2}=3a^2\pi$(点火
|
||||
|
||||
所以可以根据公式$S=2\dfrac{1}{2}\int_0^\pi a^2(1+\cos\theta)^2\,\textrm{d}\theta$。
|
||||
|
||||
$=a^2\displaystyle{\int_0^\pi\left(2\cos^2\dfrac{\theta}{2}\right)^2\textrm{d}\theta}$
|
||||
$=a^2\displaystyle{\int_0^\pi\left(2\cos^2\dfrac{\theta}{2}\right)^2\textrm{d}\theta}=4a^2\displaystyle{\int_0^\pi\cos^4\dfrac{\theta}{2}\,\textrm{d}\theta}$
|
||||
|
||||
$=4a^2\displaystyle{\int_0^\pi\cos^4\dfrac{\theta}{2}\,\textrm{d}\theta}$
|
||||
|
||||
令$\dfrac{\theta}{2}=t$,所以$\textrm{d}\theta=2\textrm{d}t$,同时上下限缩小一半:
|
||||
|
||||
$=8a^2\int_0^{\frac{\pi}{2}}\cos^4t\,\textrm{d}t$
|
||||
令$\dfrac{\theta}{2}=t$,所以$\textrm{d}\theta=2\textrm{d}t$,同时上下限缩小一半:$=8a^2\int_0^{\frac{\pi}{2}}\cos^4t\,\textrm{d}t$
|
||||
|
||||
根据华理士公式:$=8a^2\cdot\dfrac{3}{4}\cdot\dfrac{1}{2}\cdot\dfrac{\pi}{2}=\dfrac{3}{2}a^2\pi$。
|
||||
|
||||
@@ -514,27 +504,19 @@ $V_x=\pi\int_0^{2a\pi}y^2\,\textrm{d}x$
|
||||
|
||||
代入参数方程并改变上下限:
|
||||
|
||||
$=\pi\int_0^{2\pi}a^2(1-\cos t)^2\,\textrm{d}[a(t-\sin t)]$
|
||||
$=\pi\int_0^{2\pi}a^2(1-\cos t)^2\,\textrm{d}[a(t-\sin t)]=a^3\pi\int_0^{2\pi}(1-\cos t)^3\,\textrm{d}t$
|
||||
|
||||
$=a^3\pi\int_0^{2\pi}(1-\cos t)^3\,\textrm{d}t$
|
||||
|
||||
$=a^3\pi\displaystyle{\int_0^{2\pi}\left(2\sin^2\dfrac{t}{2}\right)^3\textrm{d}t}$
|
||||
|
||||
$=8a^3\pi\displaystyle{\int_0^{2\pi}\sin^6\dfrac{t}{2}\textrm{d}t}$
|
||||
$=a^3\pi\displaystyle{\int_0^{2\pi}\left(2\sin^2\dfrac{t}{2}\right)^3\textrm{d}t}=8a^3\pi\displaystyle{\int_0^{2\pi}\sin^6\dfrac{t}{2}\textrm{d}t}$
|
||||
|
||||
令$\dfrac{\theta}{2}=t$,所以$\textrm{d}\theta=2\textrm{d}t$,同时上下限缩小一半:
|
||||
|
||||
$=16a^3\pi\int_0^\pi\sin^6u\,\textrm{d}u$
|
||||
|
||||
$=32a^3\pi\int_0^{\frac{\pi}{2}}\sin^6u\,\textrm{d}u$
|
||||
$=16a^3\pi\int_0^\pi\sin^6u\,\textrm{d}u=32a^3\pi\int_0^{\frac{\pi}{2}}\sin^6u\,\textrm{d}u$
|
||||
|
||||
华理士公式得到最后$=5a^3\pi^2$。
|
||||
|
||||
同理可得$y$轴旋转体积为$V_y=2\pi\int_0^{2\pi}xy(x)\,\textrm{d}x$
|
||||
|
||||
$=2\pi\int_0^{2\pi}a(t-\sin t)a^2(1-\cos t)^2\,\textrm{d}t$
|
||||
|
||||
$=2a^3\pi\int_0^{2\pi}(t-\sin t)\cdot 4\sin^4\dfrac{t}{2}\,\textrm{d}t$
|
||||
$=2\pi\int_0^{2\pi}a(t-\sin t)a^2(1-\cos t)^2\,\textrm{d}t=2a^3\pi\int_0^{2\pi}(t-\sin t)\cdot 4\sin^4\dfrac{t}{2}\,\textrm{d}t$
|
||||
|
||||
然后拆开分别进行凑微分法,得到$6a^3\pi^3$。
|
||||
|
||||
@@ -564,4 +546,21 @@ $S_n=\sum\limits_{i=1}^n\Vert\overline{M_{i-1}M_{i}}\Vert$,$S=\lim\limits_{\de
|
||||
|
||||
如果是极坐标方程,则$S=\int_\alpha^\beta\sqrt{\rho^2+\rho'^2}\,\textrm{d}\theta$。
|
||||
|
||||
\section{积分表}
|
||||
|
||||
\begin{center}
|
||||
\begin{tabular}{|c|c|c|c|}
|
||||
\hline
|
||||
原函数 & 积分函数 & 原函数 & 积分函数\\ \hline
|
||||
$\int k\,\textrm{d}x$ & $kx+C$ & $\int x^\mu\,\textrm{d}x$ & $\dfrac{x^{\mu+1}}{\mu+1}+C$ \\ \hline
|
||||
$\int\dfrac{\textrm{d}x}{x}$ & $\ln\vert x\vert+C$ & $\int\dfrac{\textrm{d}x}{1+x^2}$ & $\arctan x+C$ \\ \hline
|
||||
$\int\dfrac{\textrm{d}x}{\sqrt{1-x^2}}$ & $\arcsin x+C$ & $\int\cos x\,\textrm{d}x$ & $\sin x+C$ \\ \hline
|
||||
$\int\sin x\,\textrm{d}x$ & $-\cos x+C$ & $\int\dfrac{\textrm{d}x}{\cos^2x}$ & $\tan x+C$ \\ \hline
|
||||
$\int\dfrac{\textrm{d}x}{\sin^2x}$ & $-\cot x+C$ & $\int\sec x\tan x\,\textrm{d}x$ & $\sec x+C$ \\ \hline
|
||||
$\int\csc x\cot x\,\textrm{d}x$ & $-\csc x+C$ & $\int e^x\,\textrm{d}x$ & $e^x+C$ \\ \hline
|
||||
$\int a^x\,\textrm{d}x$ & $\dfrac{a^x}{\ln a}+C$ & & \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
|
||||
\end{document}
|
||||
|
||||
Binary file not shown.
Reference in New Issue
Block a user